Geometric Scaling at RHIC and LHC

Andre Utermann, Vrije Universiteit Amsterdam

in collaboration with

Daniël Boer and Erik Wessels

based on: arXiv:0711.4312 [hep-ph]

Outline

Situation:

Successful description of DIS data using (geometrical scaling) dipole models **Question**:

Also possible for RHIC data?

1. Introduction

- DIS and the dipole picture
- Geometric scaling in DIS

2. The dipole picture for hadron production at hadron colliders

- Modeling the dipole cross section and geometric scaling
- What to expect from BFKL (BK) evolution

3. Results

- Scaling at RHIC
- Possible conclusions for small-x evolution

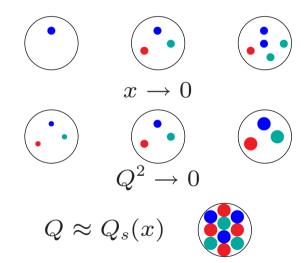
4. LHC predictions

- Probing smaller x

5. Conclusions

1. Introduction

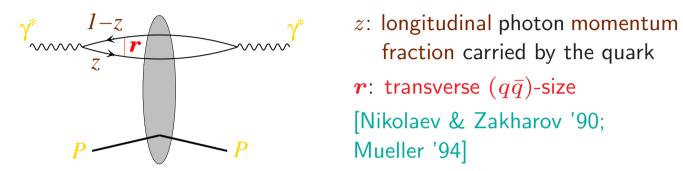
- ullet eP-scattering at HERA: Strong **rise** of the gluon distribution $f(x,Q^2)$ at small x
 - Rise of distrib. $f(x,Q^2)$ due to softer gluon emission
 - Problem: Undamped rise may violate unitarity (Froissart bound)
 - Reason: Linear DGLAP or BFKL eqs.: non-interact. partons in the proton
- Partons start to overlap \Rightarrow becomes important
- Number of partons rises with $x \to 0$ "size" $\sim \frac{1}{Q}$ of partons rises with $Q^2 \to 0$ Interaction becomes important for $Q \lesssim Q_s(x)$
- $-\Rightarrow$ New relevant scale at small x: $Q_s(x)$



- Interaction between partons ⇒ non-linear corrections to the evolution equations
 [Gribov, Levin & Ryskin '81-'83]
- Idea: Interaction \Rightarrow rise of the gluon distribution at small x is tamed \Rightarrow gluon distribution "saturates"

Color-Dipole Picture

• Investigation of small-x saturation most transparent in the color-dipole picture:



r: transverse $(q\bar{q})$ -size [Nikolaev & Zakharov '90; Mueller '94]

• Intuitive in the P-rest frame: for small x, γ^* fluctuates mainly into $q\bar{q}$ -dipole where $\tau_{q\bar{q}-\text{formation}} \gg \tau_{(q\bar{q})\,P-\text{interaction}} \Rightarrow \text{factorization}$:

$$\sigma_{L,T}(x,Q^2) = \int_0^1 dz \int d^2 \boldsymbol{r} |\Psi_{L,T}^{\gamma^* \to q\bar{q}}(z,r;Q^2)|^2 \sigma_{\mathsf{DP}}(\boldsymbol{r} = |\boldsymbol{r}|,x)$$

- Photon wave function, $\Psi_{L,T}^{\gamma^* \to q\bar{q}}$: perturbatively calculable
- **Dipole-proton cross section** σ_{DP} contains non-perturbative elements (proton):
 - Simplest approach in the framework of pQCD: two-gluon exchange

$$\sigma_{\rm DP}({m r},x) = {\pi^2 \over 3} \, \alpha_s \, x G(x,\mu^2) \, {m r}^2 + {\cal O}(r^4) \,, \quad \sigma_{\rm DP} \Leftrightarrow {\rm gluon \; distrib}.$$

 $-r \gtrsim 1/Q_s(x)$: $\sigma_{\rm DP}$ saturates towards a black disc limit $\sigma_0 \approx \pi R_h^2$

Parameterizing the dipole cross section

• HERA data on structure function F_2 at low x ($x \leq 0.01$) quite well described by [Golec-Biernat, Wüsthoff]

$$\sigma_{\text{GBW}}(\mathbf{r}, \mathbf{x}) = \sigma_0 \left\{ 1 - \exp \left[-\frac{1}{4} \mathbf{r}^2 Q_s^2(\mathbf{x}) \right] \right\}$$

- r denotes the transverse size of the dipole
- -x dependence of the saturation scale:

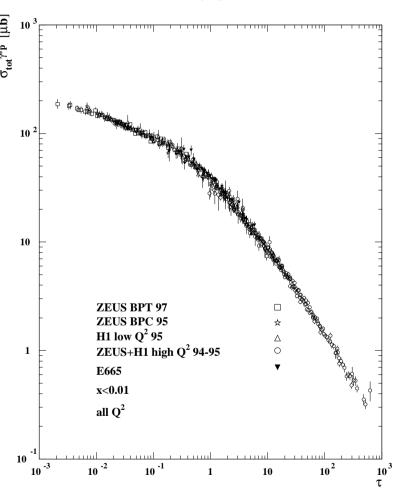
$$Q_s(x) = 1 \, {\rm GeV} \, \left(\frac{x_0}{x}\right)^{\lambda/2}$$
, where $x_0 \simeq 3 \times 10^{-4}$ and $\lambda \simeq 0.3$

Consistent with NLO BFKL evolution, which gives $Q_s^2(x) \sim 1/x^{\lambda}$ with $\lambda \simeq 0.3$ [Triantafyllopoulos, 2002].

Geometric scaling

• Basic feature of GBW model: geometric scaling $\sigma_{\rm DP}(rQ_s) \Rightarrow \sigma_{\gamma^*p}(Q^2/Q_s^2(x))$

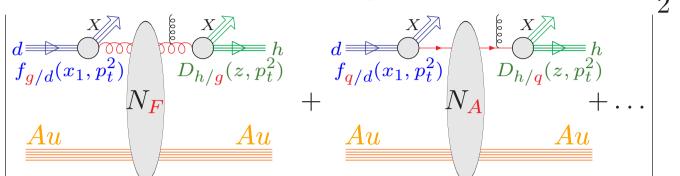
- Indeed the DIS data depend only on $\tau=Q^2/Q_s^2(x)$ [Stasto, Golec-Biernat and Kwiecinski, '00]
- Only true for **small** x data (x < 0.01)
- The **whole** Q^2 **region** can be described (even the photo-production limit $Q^2 \rightarrow 0$)
- Scaling behavior is quite model independent
- Feature holds also outside the saturation region
- Seen as the strongest phenom. support for saturation



• But more precise data require at large Q^2 scaling violating modifications e.g. by taking DGLAP evolution into account [Bartels et al 2002], [Gotsman et al 2002]

2. Hadron production at hadron colliders in the dipole picture

• Hadron production in d-Au scattering, $d + Au \rightarrow h + X$



– Amplitude: Wilson lines sum soft interact. of parton with nucleus (CGC) Squaring amplitude \Rightarrow dipoles $N_{A,F}$ entering the cross sections

$$\Rightarrow \frac{\mathrm{d}N(dAu \to h(p_t, y_h)X)}{\mathrm{d}y_h \,\mathrm{d}^2p_t} = \frac{K(y_h)}{(2\pi)^2} \int_{x_F}^1 dx_1 \frac{x_1}{x_F} [f_{q/d}(x_1, p_t^2) \, N_F(q_t, x_2) \, D_{h/q}(x_F/x_1, p_t^2)]$$
[Dumitru & Jalilian-Marian 2006]
$$+ f_{g/d}(x, p_t^2) \, N_A(q_t, x_2) \, D_{h/g}(x_F/x_1, p_t^2)]$$

- p_t, y_h : transv. momentum and rapidity of produced hadron $(x_F \equiv \frac{p_t}{\sqrt{s}} \exp[y_h])$
- $q_t = \frac{x_1}{x_E} p_t$: transverse momentum of dipole probing the target nucleus (CGC)
- $-x_2 = x_1 \exp[-2y_h]$: momentum fraction of the target partons
- $-x_1$: momentum fraction of the hard parton in the probe
- Loop effects absorbed in DGLAP evolution of $f_{(q,g)/d}$ and $D_{h/(q,g)}$

Modeling the dipole scattering amplitudes $N_{A,F}$

Dipole scattering amplitude following DHJ (adjoint repres. for gluon)

$$N_{A}(q_{t}, \mathbf{x_{2}}) \equiv \int d^{2}r \ e^{i \, \vec{r} \cdot \vec{q_{t}}} N_{A}(r = |\vec{r}|, q_{t} = |\vec{q_{t}}|, \mathbf{x_{2}})$$

- N_F (fundam. repres. for quarks) from N_A : $(r^2Q_s^2)^{\gamma} \to (\frac{C_F}{C_A}r^2Q_s^2)^{\gamma}$, $\frac{C_F}{C_A} = \frac{4}{9}$
- Saturation scale, $Q_s^2(x) = A_{\rm eff}^{1/3} \left(\frac{x_0}{x}\right)^{\lambda}, \ \lambda = 0.3, \ x_0 = 3 \cdot 10^{-4}, \ A_{\rm eff} \approx 18.5$
- Ansatz for N_A introduced by modifying the GBW model ($\gamma = 1$):

$$N_A(r_r, q_t, x) = 1 - \exp\left[-\frac{1}{4}(r^2Q_s^2(x))^{\gamma(r,x)}\right]$$

- Small r: BFKL limit is recovered and γ is related to the anom. dimension:

$$N(\mathbf{r}, \mathbf{x}) \sim x \, g(x, \mu(r)^2) \quad \Rightarrow \quad \frac{d \, x \, g(x, \mu(r)^2)}{d \, \log x_0 / \mathbf{x}} \sim \gamma(\mathbf{r}, \mathbf{x}) \, x \, g(x, \mu(r)^2)$$

- γ chosen to be a function of q_t rather than $r \Rightarrow$ simplifies Fourier transform.

Expectations on anomalous dimension γ

- Expectations on $\gamma(r, x)$ from small x evolution
 - Linear BFKL evol. with satur. bound. cond. inspires $\gamma(q_t=Q_s)\approx 0.628\equiv \gamma_s$ e.g. [lancu et al 2002, Mueller et al 2002, Triantafyllopoulos 2002]
 - However, not really a feature of the non-linear BK equation [Boer, Wessels, A.U. 2007]
 - Fixed x and $r \to 0$: $\gamma \to 1$ to reproduce the limit $N \sim r^2$
 - γ rises only logarithmically as $\frac{1}{y} \log q_t/Q_s$
- Good description of **forward** hadron production in d+Au collisions at **RHIC** with [Dumitru et al 2006] similar to [Kharzeev et al 2004]

$$\gamma(q_t, x) = \gamma_s + (1 - \gamma_s) \frac{\log(q_t^2/Q_s^2(x))}{\lambda y + d\sqrt{y} + \log(q_t^2/Q_s^2(x))}, \ y = \log 1/x$$

- $-\gamma$ depends explicitly (not only via Q_s) on $x \Rightarrow$ scaling violation
- Questions we want to address:
 - Are the central rapidity data also describable?
 - Are geometric scaling violations really required?
 - What to expect at LHC?

Our new model

• Our parameterization of the anomalous dimension γ

$$\gamma(w = q_t/Q_s(x)) = \gamma_1 + (1 - \gamma_1) \frac{(w^a - 1)}{(w^a - 1) + b}$$

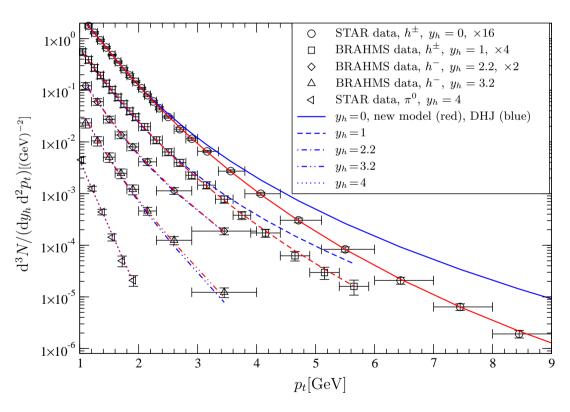
- $-\gamma_1$: value at the saturation scale
- a: defines how fast the limit 1 is reached for large $\frac{w}{w}$, $1-\gamma(w)\sim \frac{1}{w^a}$
- Main differences to DHJ model: no scal. violation and steeper rise towards 1
- ullet Leads to faster fall off of the dipole scattering amplitude with rising q_t

$$\begin{split} N_{A}(q_{t}) \approx & \frac{2\pi}{q_{t}^{2}} \frac{1}{w^{2\gamma(w)}} \frac{1}{4} \int_{0}^{\infty} dz \, z \, \mathbf{J}_{0}(z) \, (-z^{2\gamma(w)}) = \frac{2\pi \, 2^{2\gamma(w)-1} \, Q_{s}^{2\gamma(w)}}{q_{t}^{2\gamma(w)+2}} \frac{\Gamma(1+\gamma(w))}{-\Gamma(-\gamma(w))} \\ \approx & \frac{\gamma(w) \to 1}{q_{t}^{4}} \frac{4\pi \, Q_{s}^{2}}{q_{t}^{4}} \, (1-\gamma(w)) \propto \begin{cases} & \frac{Q_{s}^{2}}{q_{t}^{4} \log(q_{t}^{2}/Q_{s}^{2})} & \text{for DHJ } \gamma \\ & \frac{Q_{s}^{2+a}}{q_{t}^{4+a}} & \text{for our scaling } \gamma \end{cases} . \end{split}$$

– Folding with parton and fragment. func. \Rightarrow steeper fall-off of p_t distribution

3. Results

- Note, due to folding with non-scaling pdf's and fragment. functions: scaling dipole ampl. $N(q_t/Q_s(x))$ doesn't lead to scaling p_t distr. $dN(p_t/Q_s)$
- Taking $\gamma(q_t=Q_s)=\gamma_1=0.628$ and fitting parameter a=2.82 and b=168 \Rightarrow very good description of RHIC data using a **scaling model**
- For $y_h \approx 0-1$: DHJ model starts to fail for $p_t \gtrsim 2.5 \; \mathrm{GeV}$
- There: $x \gtrsim 0.01$
- But: Q_s still larger than in DIS
- LO analysis requires K factors: drops from $K \approx 4$ to $K \approx 0.7$ between $y_h = 0$ and $y_h = 4$
- NLO pQCD analysis suggests p_t independent K factors

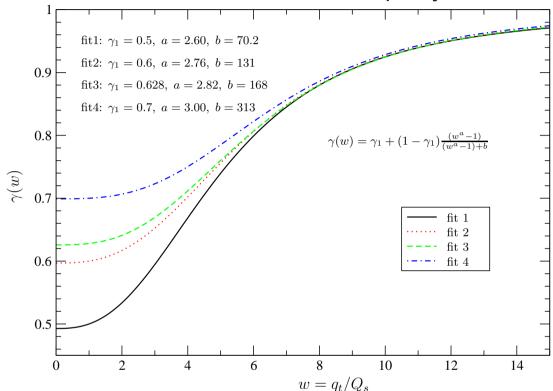


RHIC data completely compatible with geometric scaling!

Constraining γ

• Different sets of parameters are able to describe the RHIC data equally well

- Forward region $y_h = 3, 4$
- Only region $q_t = \mathcal{O}[Q_s]$ where $\gamma(w) \approx \gamma_1$ probed
- Even γ_1 hardly constrained
- Central Region $y_h = 0, 1$
- Probe large $w=q_t/Q_s$ rise of γ $1-\gamma(w)\propto 1/w^a$
- Logarit. rise $1-\gamma({\color{red} w}) \propto 1/\log {\color{red} w}$ im-compatible with data



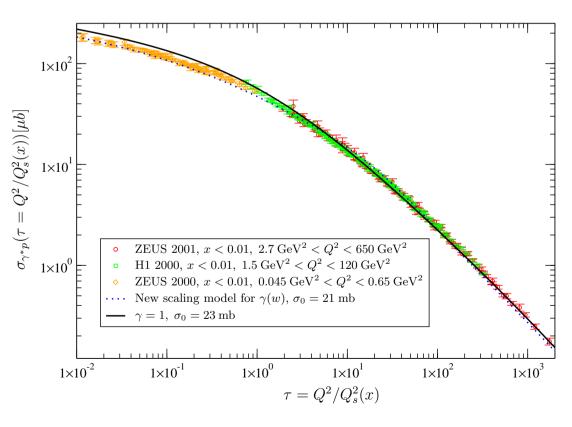
- Note, that a whole y_h range has to be probed to establish scaling violation $\gamma(w, y)$
 - At one y_h a range of $y = 2y_h + \log 1/x_1$ is probed.
 - However, for a single y_h one can always define a scaling $\gamma(w) \Leftrightarrow \gamma(w, y)$
- ullet Region where DHJ/BFKL model works a constant $\gamma({\color{red} w}) pprox \gamma_1$ would already work
 - γ_1 doesn't have to be $\gamma_s \approx 0.628$

New model and DIS

• Check whether new model is compatible with DIS data using dipole cross section

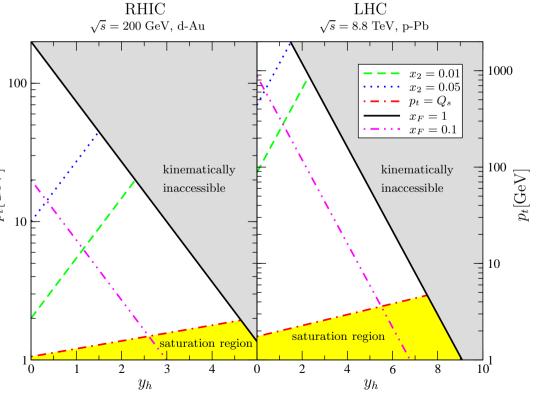
$$\sigma_{\rm DP}(rQ_s(x)) = \sigma_0 N_{\gamma}(rQ_s(x)) = \sigma_0 \left(1 - \exp\left[-\frac{1}{4}(r^2Q_s^2(x))^{\gamma(Q/Q_s(x))}\right]\right)$$

- $Q^2 \gg Q_s(x)^2$: same predictions as in GBW model $(\gamma = 1)$
- Region $Q^2/Q_s^2(x) \approx 10-100$: requires smaller σ_0 (21 mb instead of 23 mb)
- Satura. region $Q^2/Q_s^2(x)\ll 1$: smaller γ suppresses σ_{γ^*p} requires smaller quark masses



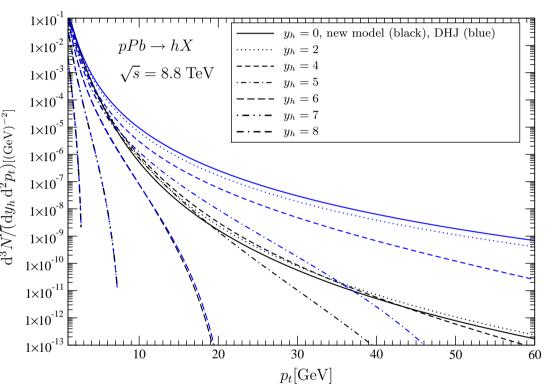
4. LHC predictions

- ullet RHIC, region where DHJ/BFKL model fails: x_2 is not very small
- LHC larger energies: small- x_2 extends to larger p_t -range \Rightarrow slower (BFKL) fall-off of p_t distribution manifests in small x_2 region
- Small x_2 in terms of p_t and y_h
- $x_2 \lesssim 0.01$: DHJ works at RHIC
- Saturation region $p_t \leq Q_s(x_2)$.
- d-Au: $A_{\text{eff}} = 18.5, \sqrt{s} = 200 \,\text{GeV} \stackrel{>}{\underline{\circ}}_{\underline{\varsigma}}$ p-Pb: $A_{\text{eff}} = 20, \sqrt{s} = 8.8 \,\text{TeV}$
- Dominant contribution to conv. integral, region x_1 close to x_F $\Rightarrow x_2 \approx p_t/\sqrt{s} \exp(-y_h)$.



Hadron production at LHC

- ullet Predictions for p-Pb scattering at $\sqrt{s}=8.8~\mathrm{TeV}$ in small- x_2 region
- Small p_t , similar predictions of DHJ and new scaling model
- Forward region $y_h \approx 7-8$: [2-(A+D)](*d-zp*/sp*/ x_2) same predictions in the models
 Large region of small x_2 where x_2
- predictions are clearly different
- $-p_t$ slopes at moderate y_h 's ⇒ discrimination between DHJ and our model in small-x region



- Very similar predictions for p-p scattering at $\sqrt{s} = 14 \text{ TeV}$
- ullet Predict. of our model and BFKL inspired model clearly differ. at small x
 - LHC offers a clear test of BFKL features ($\gamma_1 \approx \gamma_s$, logarithmic rise of γ)

Jet Production

- Unlike in DIS, scaling dipole amplitude does not imply scaling cross section
- Problem less involved for jet production
 - Jet cross section does not involve any fragmentation functions $D_{h/(q,q)}(x_F/x_1,p_t^2) \rightarrow \delta(x_F/x_1-1)$

$$\frac{dN_h}{dy_h d^2 p_t} = \frac{K(y_h)}{(2\pi)^2} \left[\sum_q f_{q/p}(x_F, p_t^2) N_F(p_t, x_2) + f_{g/p}(x_F, p_t^2) N_A(p_t, x_2) \right],$$

- where $x_F = p_t/\sqrt{s} \exp(y_h)$ and $x_2 = x_F \exp(-2y_h) = p_t/\sqrt{s} \exp(-y_h)$.
- Still complications from non-scaling parton distribution \Rightarrow even for scaling $N_{A,F}$, no scaling in $\mathrm{d}N/(\mathrm{d}y_h\,\mathrm{d}p_t^2)$
- Gluon (quark) dominance $\Rightarrow (p_t^2 dN_h/dy_h d^2p_t)/f_{q(q)/p}(x_F,p_t^2) \text{ would be a function of } p_t/Q_s(x_2) \text{ only}$
- However, range of gluon dominance presumably even at LHC to small to establish geometric scaling (violation) directly in this way

Conclusion

- ullet Scaling model of dipole scattering amplitude N(r,x) describes RHIC data
 - $-\Rightarrow RHIC d-Au$ data completely compatible with geometric scaling
 - Models (DHJ) inspired by small-x evolution fail at mid-rapidity
 - There, a faster rise of γ is required
 - Both models work for forward rapidities
 - There, also a constant $\gamma(w) \approx \gamma_1$ works
- Model also compatible with small-x DIS data
- ullet Differences between our model and expectations from small-x
 - No scaling violation
 - Phenomenologically more important, faster fall-off of p_t distribution
- New insight to be expected from LHC
 - Different fall-off of the p_t distribution shows up where x is still small
 - Allows to test BFKL-like rise $\propto \log q_t/Q_s$ at small x